Department of Nanoscience and Technology

Revised Syllabus of Diploma Program

Program Objectives of the Course:

- 1) To develop laboratory skills of students as per industrial requirement.
- 2) To enhance the technical knowledge of students.
- 3) To increase the employability opportunities for the students.
- 4) To promote entrepreneurship skills among the students.

Program Outcomes:

After successful completion of this Diploma Program students will be able to

- 1) Develop technical skills required for Nanotechnology based industries.
- 2) Understand the product development in nanotechnology.
- 3) Get knowledge of self-employability.
- 4) Develop entrepreneurial skills.

II Year Diploma Programme

- 1. Title: Industrial Nanotechnology
- 2. Year of Implementation: 2021
- 3. Duration: One Year
- 4. Pattern: Semester
- 5. Medium of Instruction: English
- 6. Contact hours: 7 hours/week
- 8. Structure of Course:

Syllabus Structure (UG)

Year	Semester	Course No.	Course Code	Contact Hours	Credits (1Credit=15 H)	Total Marks
1	Ι	CT I	DNTT 101	30	2	75
		CL I	DNTL101	60	2	75
	II	CT II	DNTT 202	30	2	75
		CL II	DNTL202	60	2	75
	Annual	CP I	DNTP101	30	1	50
			Total	210	9	350

Year	Semester	Course No.	Course Code	Contact Hours	Credits (1Credit=15 H)	Total Marks
2	III	CT III	DNTT 303	30	2	75
		CL III	DNTL303	60	2	75
	IV	CT IV	DNTT 404	30	2	75
		CL IV	DNTL404	60	2	75
	Annual	CP II	DNTP202	30	1	50
	Industrial and or Incubation and or Research and or Field Training			30	1	-
			Total	240	10	350
	v	CT V	DNTT 505	30	2	75
		CLV	DNTL505	60	2	75
	VI	CT VI	DNTT 606	30	2	75
		CL VI	DNTL606	60	2	75
	Annual	CP III	DNTP303	60	2	100
	Industrial and or Incubation and or Research and or Field Training			30	1	-
			Total	270	11	400
			Total	720	30	1100

C: Course, T: Theory, L: Lab (Practical), P: Project Total No. of Courses: 15 (Theory: 06, Practical: 06, Project: 03) Theory and Practical: Semester, Project: Annual

Semester III

DNTT 303: Thin film Sensor Technology (Contact Hrs: 30 Credits: 2)

Learning Objectives:

Students will be able to

- 1) Get aware about thin film sensor technology.
- 2) Understand the industrial applications of sensors.

Unit I Nanosensors:

Introduction to sensors. Characteristics and terminology - static and dynamic characteristics. Micro and Nano--sensors, Fundamentals of sensors, biosensor, micro fluids, Packaging and characterization of sensors, Sensors for aerospace and defense. Organic and inorganic Nano- sensors.

Unit II Nanotechnology enabled devices:

Nanomaterials and nanostructured films, Nanoscale electronic and ionic transport. Sensor for bio-medical applications. Nanoparticle-biomaterial hybrid systems for sensing applications. Gas sensor.

(15)

(15)

Learning Outcomes:

Unit I: After completion of the unit, Student is able to

- 1. Understand types of Sensors
- 2. Uses of sensors

Unit II: After completion of the unit, Student is able to

- 1. Understand properties of Nanoscale electronics
- 2. Understand Nanosturcture films and its properties
- 3. Understand various opportunities in applications of bio- sensors Explain SILAR technique

Reference Books:

- 1. Chemical Sensors and Biosensors; Brian, R Eggins; Wiley; New York, Chichester, 2002.
- 2. Biosensors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2004.
- 3. Nanomaterials for Biosensors, Cs. Kumar, Wiley VCH, 2007.
- 4. Smart Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006.

DNTL303: (Practical): (Contact Hrs: 60 Credits: 02)

Learning Objectives:

Students will be able to

- 1) Understand properties for thin film
- 2) Understand various Optical properties of thin films.
- 3) Understand various Electrical properties of thin films.
- 4) Understand calibration of sensor.

List of Practical's (15)

- 1. Deposition of thin films using SILAR method on glass substrate-I
- 2. Deposition of thin films using SILAR method on glass substrate.-II
- 3. Deposition of thin films using CBD glass substrate-I
- 4. Deposition of thin films using CBD glass substrate.-II
- 5. Deposition of thin films using SILAR method on silica substrate.
- 6. Deposition of thin films using CBD silica substrate.
- 7. Study Physical properties of thin film.
- 8. Optical properties of thin film (Transmittance)
- 9. Optical properties of thin film (Absorbance)
- 10. Optical properties of thin film (band gap)
- 11. Morphological characterization of thin film by using SEM
- 12. Electrical properties of thin film (Resistivity)
- 13. Electrical properties of thin film (Conductivity)
- 14. Calibration of sensor (Sensitivity and Stability)
- 15. Study Biosensor for medical diagnosis.

Learning Outcomes:

After completion of the practical, Student is able to

- 1) Develop skill for measuring physical, optical and electrical properties of sensor.
- 2) Get technical knowledge of thin films synthesis for sensor applications
- 3) Develop basic skills required for sensor development.

Reference Books:

 A Laboratory Course in Nanoscience and Nanotechnology by Dr. Gerrard Eddy Jai Poinern; CRC Press, Taylor and Francis Group, 2015.

Semester IV

DNTT 404: Biosensor (Contact Hrs: 30 Credits: 2)

Learning Objectives:

Students will be able to

- 1) Get knowledge about biosensor
- 2) Understand the applications of biosensor.

Unit I Introduction to Biosensors:

Definitions, biological inspiration, types of sensors, target analytes, various recognition, Recognition event : Catalytic, Single and multiple enzyme, Bio Affinity: Labeled and Label free, whole cell sensing – bacteria, yeast, mammalian cell, Generation of Biosensor; Biomolecule Immobilization Techniques, Enzyme Kinetics

Unit II Applications of Biosensors:

Biosensors and diabetes management, Microfabricated biosensors and point-of-care diagnostics systems, Noninvasive biosensors in clinical analysis; Surface plasmon resonance and evanescent wave biosensors, Biological MEMS materials

Learning Outcomes:

Unit I: After completion of the unit, Student is able to

- 1. Explain parts of biosensor
- 2. Know Bio Affinity
- 3. Know generation of biosensor

Unit II: After completion of the unit, Student is able to

- 1. Explain biosensors in clinical analysis
- 2. Explain Biological MEMS material
- 3. Explain application of biosensor in diagnostics systems

Reference Books:

(Lecture 15)

(Lecture 15)

- 1. Introduction to Biosensors by Jeong-Yeol Yoon; Publisher: Springer-Verlag New York Ed.1
- 2. Recognition Receptors in Biosens.by Mohammed Zourob; Publisher: Springer-Verlag New York Ed.1
- **3.** Novel Approaches in Biosensors and Rapid Diagnostic Assays by Zvi Liron; Publisher: Springer US Ed.1

DNTL404: (Practical): (Contact Hrs: 60 Credits: 02)

Learning Objectives:

Students will be able to

- 1. Understand techniques MEMS
- 2. Understand various characteristics of transducers.
- 3. Understand BioMEMS.
- 4. Understand immobilization method.

List of Practical's (15)

- 1. To study about various static and dynamic characteristics of Transducers.
- 2. To study about Electrochemical & optical Transduction.
- 3. Introduction to various types of Biosensors.
- 4. To study about different types of Force Measurement Techniques.
- 5. To study about different types of Torque Measurement Techniques.
- 6. Introduction to Bio-MEMs.
- 7. To study about various fabrication techniques of BioMEMs.
- 8. Immobilization methods (i) Absorption (ii) Covalent Binding (iii) Entrapment
- 9. Study of alcohol based Biosensor
- 10. Study of Glucose based biosensor
- 11. Study of enzyme based biosensor
- 12. Study of DNA based biosensor
- 13. Study of mechanism and action of voltametric DNA biosensor
- 14. Study of Graphene based Electrochemical DNA biosensor.
- 15. Validation study of paper based biosensor for detecting pesticides

Learning Outcomes:

After completion of the practical, Student is able to

- 1. Develop skill for Electrochemical & optical Transduction
- 2. Get technical knowledge of MEMS
- 3. Develop basic skills required for biosensor.

Reference Books:

- 1. Chemical Sensors and Biosensors; Brian, R Eggins; Wiley; New York, Chichester, 2002.
- 2. Biosensors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2004..